Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of a redox-regulated chaperone network.

Identifieur interne : 000E75 ( Main/Exploration ); précédent : 000E74; suivant : 000E76

Identification of a redox-regulated chaperone network.

Auteurs : Jörg H. Hoffmann [États-Unis] ; Katrin Linke ; Paul C F. Graf ; Hauke Lilie ; Ursula Jakob

Source :

RBID : pubmed:14685279

Descripteurs français

English descriptors

Abstract

We have identified and reconstituted a multicomponent redox-chaperone network that appears to be designed to protect proteins against stress-induced unfolding and to refold proteins when conditions return to normal. The central player is Hsp33, a redox-regulated molecular chaperone. Hsp33, which is activated by disulfide bond formation and subsequent dimerization, works as an efficient chaperone holdase that binds to unfolding protein intermediates and maintains them in a folding competent conformation. Reduction of Hsp33 is catalyzed by the glutaredoxin and thioredoxin systems in vivo, and leads to the formation of highly active, reduced Hsp33 dimers. Reduction of Hsp33 is necessary but not sufficient for substrate protein release. Substrate dissociation from Hsp33 is linked to the presence of the DnaK/DnaJ/GrpE foldase system, which alone, or in concert with the GroEL/GroES system, then supports the refolding of the substrate proteins. Upon substrate release, reduced Hsp33 dimers dissociate into inactive monomers. This regulated substrate transfer ultimately links substrate release and Hsp33 inactivation to the presence of available DnaK/DnaJ/GrpE, and, therefore, to the return of cells to non-stress conditions.

DOI: 10.1038/sj.emboj.7600016
PubMed: 14685279
PubMed Central: PMC1271656


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of a redox-regulated chaperone network.</title>
<author>
<name sortKey="Hoffmann, Jorg H" sort="Hoffmann, Jorg H" uniqKey="Hoffmann J" first="Jörg H" last="Hoffmann">Jörg H. Hoffmann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Linke, Katrin" sort="Linke, Katrin" uniqKey="Linke K" first="Katrin" last="Linke">Katrin Linke</name>
</author>
<author>
<name sortKey="Graf, Paul C F" sort="Graf, Paul C F" uniqKey="Graf P" first="Paul C F" last="Graf">Paul C F. Graf</name>
</author>
<author>
<name sortKey="Lilie, Hauke" sort="Lilie, Hauke" uniqKey="Lilie H" first="Hauke" last="Lilie">Hauke Lilie</name>
</author>
<author>
<name sortKey="Jakob, Ursula" sort="Jakob, Ursula" uniqKey="Jakob U" first="Ursula" last="Jakob">Ursula Jakob</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:14685279</idno>
<idno type="pmid">14685279</idno>
<idno type="doi">10.1038/sj.emboj.7600016</idno>
<idno type="pmc">PMC1271656</idno>
<idno type="wicri:Area/Main/Corpus">000E94</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E94</idno>
<idno type="wicri:Area/Main/Curation">000E94</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E94</idno>
<idno type="wicri:Area/Main/Exploration">000E94</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of a redox-regulated chaperone network.</title>
<author>
<name sortKey="Hoffmann, Jorg H" sort="Hoffmann, Jorg H" uniqKey="Hoffmann J" first="Jörg H" last="Hoffmann">Jörg H. Hoffmann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Linke, Katrin" sort="Linke, Katrin" uniqKey="Linke K" first="Katrin" last="Linke">Katrin Linke</name>
</author>
<author>
<name sortKey="Graf, Paul C F" sort="Graf, Paul C F" uniqKey="Graf P" first="Paul C F" last="Graf">Paul C F. Graf</name>
</author>
<author>
<name sortKey="Lilie, Hauke" sort="Lilie, Hauke" uniqKey="Lilie H" first="Hauke" last="Lilie">Hauke Lilie</name>
</author>
<author>
<name sortKey="Jakob, Ursula" sort="Jakob, Ursula" uniqKey="Jakob U" first="Ursula" last="Jakob">Ursula Jakob</name>
</author>
</analytic>
<series>
<title level="j">The EMBO journal</title>
<idno type="ISSN">0261-4189</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cattle (MeSH)</term>
<term>Citrate (si)-Synthase (metabolism)</term>
<term>Cysteine (chemistry)</term>
<term>Dimerization (MeSH)</term>
<term>Disulfides (chemistry)</term>
<term>Dithiothreitol (pharmacology)</term>
<term>Fluorescence Polarization (MeSH)</term>
<term>Heat-Shock Proteins (chemistry)</term>
<term>Heat-Shock Proteins (genetics)</term>
<term>Heat-Shock Proteins (metabolism)</term>
<term>Heat-Shock Proteins (physiology)</term>
<term>Luciferases (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Molecular Chaperones (chemistry)</term>
<term>Molecular Chaperones (genetics)</term>
<term>Molecular Chaperones (metabolism)</term>
<term>Molecular Chaperones (physiology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Denaturation (MeSH)</term>
<term>Protein Folding (MeSH)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Reducing Agents (pharmacology)</term>
<term>Serum Albumin, Bovine (metabolism)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Swine (MeSH)</term>
<term>Temperature (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bovins (MeSH)</term>
<term>Chaperons moléculaires (composition chimique)</term>
<term>Chaperons moléculaires (génétique)</term>
<term>Chaperons moléculaires (métabolisme)</term>
<term>Chaperons moléculaires (physiologie)</term>
<term>Citrate (si)-synthase (métabolisme)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Cystéine (composition chimique)</term>
<term>Dimérisation (MeSH)</term>
<term>Disulfures (composition chimique)</term>
<term>Dithiothréitol (pharmacologie)</term>
<term>Dénaturation des protéines (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Luciferases (métabolisme)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Pliage des protéines (MeSH)</term>
<term>Polarisation de fluorescence (MeSH)</term>
<term>Protéines du choc thermique (composition chimique)</term>
<term>Protéines du choc thermique (génétique)</term>
<term>Protéines du choc thermique (métabolisme)</term>
<term>Protéines du choc thermique (physiologie)</term>
<term>Réducteurs (pharmacologie)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Suidae (MeSH)</term>
<term>Sérumalbumine bovine (métabolisme)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Disulfides</term>
<term>Heat-Shock Proteins</term>
<term>Molecular Chaperones</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Heat-Shock Proteins</term>
<term>Molecular Chaperones</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Citrate (si)-Synthase</term>
<term>Heat-Shock Proteins</term>
<term>Luciferases</term>
<term>Molecular Chaperones</term>
<term>Serum Albumin, Bovine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Dithiothreitol</term>
<term>Reducing Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Heat-Shock Proteins</term>
<term>Molecular Chaperones</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Cystéine</term>
<term>Disulfures</term>
<term>Protéines du choc thermique</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Protéines du choc thermique</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Citrate (si)-synthase</term>
<term>Luciferases</term>
<term>Protéines du choc thermique</term>
<term>Sérumalbumine bovine</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dithiothréitol</term>
<term>Réducteurs</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Protéines du choc thermique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cattle</term>
<term>Dimerization</term>
<term>Fluorescence Polarization</term>
<term>Models, Biological</term>
<term>Oxidation-Reduction</term>
<term>Protein Conformation</term>
<term>Protein Denaturation</term>
<term>Protein Folding</term>
<term>Protein Processing, Post-Translational</term>
<term>Substrate Specificity</term>
<term>Swine</term>
<term>Temperature</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Bovins</term>
<term>Conformation des protéines</term>
<term>Dimérisation</term>
<term>Dénaturation des protéines</term>
<term>Facteurs temps</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Modèles biologiques</term>
<term>Oxydoréduction</term>
<term>Pliage des protéines</term>
<term>Polarisation de fluorescence</term>
<term>Spécificité du substrat</term>
<term>Suidae</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have identified and reconstituted a multicomponent redox-chaperone network that appears to be designed to protect proteins against stress-induced unfolding and to refold proteins when conditions return to normal. The central player is Hsp33, a redox-regulated molecular chaperone. Hsp33, which is activated by disulfide bond formation and subsequent dimerization, works as an efficient chaperone holdase that binds to unfolding protein intermediates and maintains them in a folding competent conformation. Reduction of Hsp33 is catalyzed by the glutaredoxin and thioredoxin systems in vivo, and leads to the formation of highly active, reduced Hsp33 dimers. Reduction of Hsp33 is necessary but not sufficient for substrate protein release. Substrate dissociation from Hsp33 is linked to the presence of the DnaK/DnaJ/GrpE foldase system, which alone, or in concert with the GroEL/GroES system, then supports the refolding of the substrate proteins. Upon substrate release, reduced Hsp33 dimers dissociate into inactive monomers. This regulated substrate transfer ultimately links substrate release and Hsp33 inactivation to the presence of available DnaK/DnaJ/GrpE, and, therefore, to the return of cells to non-stress conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14685279</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>08</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0261-4189</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>23</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2004</Year>
<Month>Jan</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>The EMBO journal</Title>
<ISOAbbreviation>EMBO J</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of a redox-regulated chaperone network.</ArticleTitle>
<Pagination>
<MedlinePgn>160-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We have identified and reconstituted a multicomponent redox-chaperone network that appears to be designed to protect proteins against stress-induced unfolding and to refold proteins when conditions return to normal. The central player is Hsp33, a redox-regulated molecular chaperone. Hsp33, which is activated by disulfide bond formation and subsequent dimerization, works as an efficient chaperone holdase that binds to unfolding protein intermediates and maintains them in a folding competent conformation. Reduction of Hsp33 is catalyzed by the glutaredoxin and thioredoxin systems in vivo, and leads to the formation of highly active, reduced Hsp33 dimers. Reduction of Hsp33 is necessary but not sufficient for substrate protein release. Substrate dissociation from Hsp33 is linked to the presence of the DnaK/DnaJ/GrpE foldase system, which alone, or in concert with the GroEL/GroES system, then supports the refolding of the substrate proteins. Upon substrate release, reduced Hsp33 dimers dissociate into inactive monomers. This regulated substrate transfer ultimately links substrate release and Hsp33 inactivation to the presence of available DnaK/DnaJ/GrpE, and, therefore, to the return of cells to non-stress conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hoffmann</LastName>
<ForeName>Jörg H</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Linke</LastName>
<ForeName>Katrin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Graf</LastName>
<ForeName>Paul C F</ForeName>
<Initials>PC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lilie</LastName>
<ForeName>Hauke</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jakob</LastName>
<ForeName>Ursula</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM065318</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM065318</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2003</Year>
<Month>12</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>EMBO J</MedlineTA>
<NlmUniqueID>8208664</NlmUniqueID>
<ISSNLinking>0261-4189</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006360">Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019163">Reducing Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27432CM55Q</RegistryNumber>
<NameOfSubstance UI="D012710">Serum Albumin, Bovine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.12.-</RegistryNumber>
<NameOfSubstance UI="D008156">Luciferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.3.1</RegistryNumber>
<NameOfSubstance UI="D002950">Citrate (si)-Synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>T8ID5YZU6Y</RegistryNumber>
<NameOfSubstance UI="D004229">Dithiothreitol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002417" MajorTopicYN="N">Cattle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002950" MajorTopicYN="N">Citrate (si)-Synthase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004229" MajorTopicYN="N">Dithiothreitol</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005454" MajorTopicYN="N">Fluorescence Polarization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006360" MajorTopicYN="N">Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008156" MajorTopicYN="N">Luciferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018832" MajorTopicYN="N">Molecular Chaperones</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="Y">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011489" MajorTopicYN="N">Protein Denaturation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019163" MajorTopicYN="N">Reducing Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012710" MajorTopicYN="N">Serum Albumin, Bovine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2003</Year>
<Month>05</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2003</Year>
<Month>10</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14685279</ArticleId>
<ArticleId IdType="doi">10.1038/sj.emboj.7600016</ArticleId>
<ArticleId IdType="pii">7600016</ArticleId>
<ArticleId IdType="pmc">PMC1271656</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1999 Dec 15;18(24):6934-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10601016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Mar 13;279(5357):1718-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9497290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Dec 8;275(49):38302-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10976105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Mar 23;104(6):937-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2001 May 9;9(5):377-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11377198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4626-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Mar;47(5):1317-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12603737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 15;278(33):31033-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12788951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 1998 Mar;379(3):245-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9563819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 May 1;273(18):11032-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9556585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Feb 5;96(3):341-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10025400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Apr 16;230(2):163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10216254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 25;96(11):6161-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10339558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Symp. 1989;55:145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2695089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1990 Dec;4(12A):2202-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2269429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Feb 12;30(6):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1671555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1994 Feb;1(2):95-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7656024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Mar 14;272(11):7099-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9054403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jun 20;272(25):15661-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jun 23;275(25):18759-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10764757</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Graf, Paul C F" sort="Graf, Paul C F" uniqKey="Graf P" first="Paul C F" last="Graf">Paul C F. Graf</name>
<name sortKey="Jakob, Ursula" sort="Jakob, Ursula" uniqKey="Jakob U" first="Ursula" last="Jakob">Ursula Jakob</name>
<name sortKey="Lilie, Hauke" sort="Lilie, Hauke" uniqKey="Lilie H" first="Hauke" last="Lilie">Hauke Lilie</name>
<name sortKey="Linke, Katrin" sort="Linke, Katrin" uniqKey="Linke K" first="Katrin" last="Linke">Katrin Linke</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Hoffmann, Jorg H" sort="Hoffmann, Jorg H" uniqKey="Hoffmann J" first="Jörg H" last="Hoffmann">Jörg H. Hoffmann</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E75 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E75 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:14685279
   |texte=   Identification of a redox-regulated chaperone network.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:14685279" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020